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Linear Lie Algebras

M™ = M™(F) space of n X n matrices with entries in F'.

M™ is an algebra under matrix multiplication xy.

n

m” is an algebra under the Lie bracket [x,y] (where [z,y] = zy — yx).
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Upper Triangular Matrices

U™, set of upper-triangular matrices, is closed under multiplication (and Lie bracket).
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Block Partitio

Multiply block matrices exactly as you multiply regular matrices.

* * * * * * * * * *
* 3A3 * 3BQ * * 3E3 * 3F2 *
* * * * * * * * * *
* 9C3 x| 2Do % * oG3 x| oHo *
* * * * * * * * * *

3AFE3 + 3BG3 3AF> + 3BH>

2CFE3 + 2DG3 2CFy + 9DHo
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Block Upper Triangular Matrices

For any partition m = (n1,ng, ..., ni) of n, we have the corresponding algebra U of
block upper triangular matrices, and the Lie algebra u.
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The u, are called the parabolic subalgebras of m™.
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Upper Triangular Ladder Matrices

m A k-step ladder on n is a set

=D i)}

with 1 <41 < iy < ... < i <n and Let £ = {(3,2),(6,5)},
I<n<jp<..<jp<n a 2-step ladder on 6.
m The ladder matrices on L is the space
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m A ladder L is called upper triangular when
ig < Jpgqp fort=1,2,...,k — 1.
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Upper Triangular Ladder Matrices

M/ is closed under xy if and only if £ is upper triangular (B— and Huang 2015).

my is closed under [x,y] whenever L is upper triangular. But possible also closed for
certain non-upper triangular £7?

daniel.brice@csub.edu Linear Lie Algebras, Block Matrices, and Ladder Matricies



My Actual Research

Structure theory of Lie algebras
(Humphreys 1972, Serre 1965)

Derivations of parabolic Lie algebras
(Leger and Luks 1972, Farnsteiner 1988)

Zero product determined algebras
(Bresar, Grasi¢, and Ortega 2009, Wang, Yu, and Chen 2011)
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Partition n as:

£={(i, )} =gl
ng =13 — N

0 O] % x * ng=n-—np —ng

0 0% =x *x =*

0 0% = % =

0 0% =x % =*

0O O] *x *x = Ojl|a

0 0]0 0 0 0 me=|0]b|¢
0100

0O 0% =x % |*

0 0] = *‘*

0 0% = % |*

0 0% =x *x|*

0 O] % = % |*

0 0/0 0 0]0O

me = b x ((IHv) x a)
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Closing Question

M is closed under zy if an only if £ is upper triangular. Which, if any, non-upper
triangular L give mp closed under [x,y]?

Block partition and structural decomposition of m, for one-step L is complete. Need
block partition scheme and structural decomposition of m, for k-step L.

m, is zero product determined for one-step £. Show m, is zero product determined for
k-step L.
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